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Abstract. We consider a model for the interrogation of a planar Debye medium by a
non-harmonic microwave pulse from an antenna source in free space, and we compute the
reflected solution using finite elements in the spatial variables and finite differences in the
time variable. Perfectly Matched Layers (PMLs) and an absorbing boundary condition are
used to damp waves interacting with artificial boundaries imposed to allow finite compu-
tational domains. We present simulation results showing that numerical reflections from
interfaces at PML boundaries can be controlled.

1. Introduction

The purpose of this paper is to demonstrate computationally that one can implement
a two-dimensional version of the electromagnetic interrogation problems introduced in [3].
Here we use perfectly matched layers (PMLs) as absorbing layers at artificial boundaries used
to define finite computational domains. We carry out calculations to verify that artificial
reflections do not contaminate reflections from dielectric layer interfaces used to determine
dielectric parameters as well as physical geometry in inverse problem formulations. Our
results provide evidence that the one-dimensional normally incident plane wave ideas in [3]
can be extended to treat higher dimensional problems in which obliquely incident waves play
a nontrivial role.

In [3] the authors develop a theoretical and computational framework to use pulsed electro-
magnetic interrogating signals to determine dielectric and geometric properties of materials.
This framework involves time domain computations of electromagnetic signals from an an-
tenna through vacuum to the target and return. Even in the one-dimensional case treated
in [3] (where one uses an infinite antenna sheet and polarized plane waves to achieve a one-
dimensional finite spatial domain), the problems are computationally intensive. Moreover,
there are several difficulties in extending this methodology to two and three dimensions in
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addition to the usual increased computational complexities involved in moving to higher
spatial dimensions. First, interrogating signals from a finite antenna will produce oblique
incident waves to the target and these must be treated in the reflections. The uniformity
assumptions made in [3] to yield one-dimensional finite spatial domains will not be applica-
ble and an infinite spatial domain must be approximated by a finite computational domain
with artificial boundaries. Since perfectly absorbing boundary conditions are not available
in higher dimensions, some type of boundary damping must be formulated so that artificial
reflections will not interfere with reflections from the target.

In the treatment here, we model the propagation of a non-harmonic pulse from a finite
antenna source in free space across a planar interface into a dielectric. The dielectric is a
Debye medium with Ohmic conductivity. We use finite elements in the spatial variables
and finite differences in the time variable to compute the components of the electric field in
the case where the signal and dielectric parameters are independent of the y variable (the
only uniformity assumption made here). Figure 1 depicts the antenna and dielectric slab
geometry we use in our problem formulation with the infinite dielectric slab perpendicular
to the z-axis and uniform in the region z1 ≤ z ≤ z2. The uniform strip antenna is located
in the xy-plane, is infinite in the y-direction and finite in the x-direction lying in the region
−∞ ≤ y ≤ ∞, −x̄ ≤ x ≤ x̄. An alternating current along the x-direction then produces
an electric field that is uniform in y with nontrivial components Ex and Ez depending on
(t, x, z) which, when propagated in the xz-plane, results in oblique incident waves on the
dielectric surface in the xy-plane at z = z1.

We also assume that the dielectric is backed by a supraconductive material with an infi-
nite conductivity, so one side of the computational domain will have a perfectly reflecting
boundary condition. Artificial boundaries on the other three sides are assumed, producing
an approximating finite computational domain. Energy will also reflect off the boundaries on
these other three sides of the computational domain, and there is a critical need to prevent
or delay this energy’s return to the domain of interest. We use Perfectly Matched Layers
to absorb incident waves without reflection and damp the absorbed waves, and we use a
(partially) absorbing boundary condition to limit the amount of energy that reflects off a
boundary of the computational domain. When the outgoing wave returns to the domain
of interest after twice traversing the PMLs, the wave can be sufficiently attenuated to be
negligible when compared to the reflections from the dielectric.

Berenger [5] formulated construction of PMLs for free space using field splitting. Sub-
sequently Sacks et. al. [13] developed the anisotropic formulation for PMLs that we follow
here. We formulate the PMLs in terms of auxiliary equations similar to the second order
Lorentz equations employed in [3]. (A similar auxiliary equation PML formulation can also
be found in [14] and [15].) The absorbing boundary condition we use for PMLs is adapted
from Engquist and Majda’s first order absorbing boundary condition for free space [10].

A PML can be constructed to match impedance with either free space or a dielectric.
Each coordinate axis will determine a one-parameter family of PMLs. The PML parameter
determines the degree of energy attenuation in the PML. The parameter domain is [0,∞),
and the PML with parameter 0 corresponds to free space or the dielectric depending on
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Figure 1. Antenna and dielectric material geometry

whether the impedance of the one-parameter PML family is matched to free space or the
dielectric. All planar interfaces between two PMLs from the same family will be reflectionless
if the interface is normal to the family’s coordinate axis. Using one or multiple PMLs from the
appropriate family, one can construct a buffer region to a vacuum or to a dielectric that will
absorb energy without reflection and then attenuate that energy. In numerical computation
there will be reflections at the interfaces between PMLs from the same family, but these
reflections can be controlled by making the jumps in the PML parameter sufficiently small.
We note that there are relatively few efforts in the research literature on using PMLs with
finite elements (see [7] for recent efforts and related references) and, more specifically, with
finite antenna generated time domain Maxwell equation propagated fields.

Our research extends the work of Banks, Buksas, and Lin [3] who use finite elements
in space and finite differences in time to solve a corresponding one-dimensional forward
scattering problem. However, in one dimension, PMLs are not needed since an absorbing
boundary condition will absorb all incident energy. For example, if waves propagate at unit
speed, the boundary condition d

dz
= d

dt
at z = z0 absorbs all waves moving in the negative

z-direction. There is no reflection since a reflected wave would have the form f(z − t).
Unfortunately, absorbing boundary conditions in higher space dimensions will reflect some
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energy from all plane waves at non-normal incidence [10]. In our formulation, PMLs provide
the necessary extra damping to attenuate the energy that escapes the absorbing boundary
condition.

As we have noted above, extending the work in [3] to two dimensions also changes the
incidence of the electric field on the vacuum–dielectric interface from normal to oblique
incidence. Blaschak and Franzen [6] use Fourier series in the frequency domain to compute
the propagation of a time harmonic pulse train of plane waves that enter a dielectric across a
planar boundary at oblique incidence. They showed that precursors are excited by short-rise-
time pulses at oblique incidence. However, the use of Fourier series restricts this approach
to harmonic pulses.

We begin with Maxwell’s equations, introduce constitutive relations for a diagonally
anisotropic material, and derive the wave equation and its corresponding variational formula-
tion (Section 2). We then compute the reflection coefficient at a planar interface between two
diagonally anisotropic materials (Section 3) and find sufficient conditions for a reflectionless
interface.

In Section 4 we formulate our problem geometry and the parametrized families of PMLs
which we use. We give a single variational equation for the electric field that is valid on the
entire computational domain, and we identity differential equations that are satisfied by the
polarization and PML terms in the variational equation. A perfectly reflecting boundary
condition is applied to the back of the dielectric, and an absorbing boundary condition is
applied to the other three sides of the computational domain.

We then discretize our computational domain and derive a finite dimensional system of
equations for the electric field (Section 5). We give numerical results in Section 6 which verify
that PMLs significantly attenuate energy and that numerical reflections from interfaces at
PML boundaries can be controlled.

2. The Wave Equation

To derive the wave equation for a diagonally anisotropic region, we begin with Maxwell’s
equations for a region with free charge density ρ = 0:

(1)

∇ · ~D = 0

∇ · ~B = 0

∇× ~E = −∂t
~B

∇× ~H = ∂t
~D + ~J.

The vectors in (1) are functions of position ~r = (x, y, z) and time t. The current density

is the sum of a conduction current density and a source current density: ~J = ~Jc + ~Js. We
assume only free space can have a source current (e.g., in our antenna), and thus either
~Jc = ~0 or ~Js = ~0, depending on whether or not the region is free space.

We next introduce constitutive relations that are sufficiently general to allow for diagonal
anisotropy. Let S+ be the space of tempered distributions on (−∞,∞) supported in [0,∞).
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With convolution as multiplication, S+ is a commutative ring with identity ([11], Sections
5.3, 8.3), and the Dirac delta function δ is the multiplicative identity. Let M+ be the
multiplicative group of invertible elements in S+, let C[0,∞) be the space of continuous
functions on [0,∞), and define

(2) B+ = {L : L is a bijection on C[0,∞) and Lf = g ∗ f for some g ∈ M+}.
Observe that B+ is a group when the binary operator is composition of mappings. In
particular L ∈ B+ if and only if L−1 ∈ B+.

Let

T = diag(Tx, Ty, Tz)

where Tx, Ty, Tz ∈ B+, and let the diagonally anisotropic material’s constitutive relations
be given by

(3)

~D = g ∗ (T ~E)

~B = µ0T ~H

~Jc = σT ~E

where g ∈ M+, convolution is in the time variable, µ0 is the permeability of free space, and
the constant σ > 0 is the conductivity. These constitutive relations are sufficiently general to
include free space or an isotropic dielectric with Debye model (as well as many other models)
for polarization. For instance, if T is the identity operator, σ = 0, and g = ε0δ where ε0 is
the permittivity of free space, then (3) describes a vacuum.

Convolution in time commutes with the divergence operator:

∇ · ~D = ∇ · (g ∗ T ~E)

= g ∗ (∇ · T ~E).

Since g ∈ M+ and ∇· ~D = 0 it follows that ∇·T ~E = 0. Let H(t) be the Heaviside function.
Using the constitutive relations (3), we can rewrite Maxwell’s equations (1) as

(4)

∇ · T ~E = 0

∇ · T ~H = 0

∇× ~E = −µ0T (∂t
~H)

∇× ~H = T (∂t((g + σH) ∗ ~E)) + ~Js.

Let

(5)
T̃ = (TxTyTz)

−1T

T̃i = (TxTyTz)
−1Ti i = x, y, z.

Then T̃ = diag(T̃x, T̃y, T̃z).
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We next derive the wave equation for a region Ω where T and g are constant in the spatial

variables. Since T̃ will also be spatially constant in Ω, ∇ · T̃ ~E = 0 by (4). A calculation
shows that

(6)
−(∇ · (T̃∇)) ~E = −(∇ · (T̃∇)) ~E + ∇(∇ · (T̃ ~E))

= T−1(∇× (T−1(∇× ~E))).

Consequently using (6) and (4) we obtain

(−∇ · (T̃∇)) ~E = T−1(∇× T−1(∇× ~E))

= −µ0∂tT
−1(∇× ~H)

= −µ0∂
2
t ((g + σH) ∗ ~E) − µ0T

−1∂t
~Js

= −µ0∂
2
t (g ∗ ~E) − µ0σ∂t

~E − µ0T
−1∂t

~Js.

Thus the wave equation for ~E in a homogeneous, diagonally anisotropic region Ω with con-
stitutive relations (3) is given by

(7) µ0∂
2
t (g ∗ ~E) + µ0σ∂t

~E − (∇ · (T̃∇)) ~E = −µ0T
−1∂t

~Js.

Define the electric polarization vector ~P by

g ∗ E = ε0εr
~E + ~P

where εr is a relative permittivity that incorporates the instantaneous polarization [3, p.11].
Then the wave equation (7) becomes

(8) µ0ε0εr
~̈E + µ0

~̈P + µ0σ ~̇E − (∇ · (T̃∇)) ~E = −µ0T
−1 ~̇Js

where ˙= ∂t and ¨= ∂2
t . In our problem a current source will exist only in the antenna where

T is the identity operator, so the right side of (7) and (8) will reduce to either µ0
~̇Js or ~0.

The components of (8) can be expressed in variational form. Let Ω have piecewise smooth
boundary, and let φ be a test function on Ω. For a function f on Ω define

〈f, φ〉 =

∫

Ω

f(~r)φ(~r) dV.

If f and φ are also defined on ∂Ω let

〈f, φ〉∂Ω =

∫

∂Ω

f(~r)φ(~r) ds.

We are interested in computing the x-component of ~E which is the signal measured by
the finite antenna (see Figure 1) when reflected by the dielectric. Let x̂ denote the standard
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basis vector parallel to the x-axis, and define

(9)

E = ~E · x̂
P = ~P · x̂
Js = (T−1 ~Js) · x̂.

Applying the product rule, the divergence theorem and the definition of T̃ in (5), we obtain

〈(∇ · (T̃∇))E, φ〉 =

∫

Ω

∇ · (φT̃∇E) dV −
∫

Ω

(∇φ) · (T̃∇E) dV

=

∫

∂Ω

φ(T̃∇E) · ~n ds −
∫

Ω

(∇φ) · (T̃∇E) dV

=
∑

i=x,y,z

〈∂i(T̃iE), niφ〉∂Ω −
∑

i=x,y,z

〈∂i(T̃iE), ∂iφ〉

where ~n = (nx, ny, nz) is the outward unit normal to the boundary ∂Ω. Consequently the
variational form of the wave equation (8) on Ω is

(10) µ0ε0〈εrË, φ〉 + µ0〈P̈ , φ〉 + µ0〈σĖ, φ〉 +
∑

i=x,y,z

〈∂i(T̃iE), ∂iφ〉 −
∑

i=x,y,z

〈∂i(T̃iE), niφ〉∂Ω

= −µ0〈J̇s, φ〉,

or more succinctly

µ0ε0〈εrË, φ〉 + µ0〈P̈ , φ〉 + µ0〈σĖ, φ〉 + 〈∇T̃E,∇φ〉 − 〈∇T̃E, ~nφ〉∂Ω = −µ0〈J̇s, φ〉.

Our computational domain will be a region D that can be partitioned into subregions
{Ωk} with piecewise smooth boundaries such that T and g are constant in the spatial vari-
ables on each Ωk. Consequently, the components of a solution of Maxwell’s equations (1)
with constitutive relations (3) will satisfy the variational equation (10) on each region Ωk.

Furthermore, the standard interface conditions will be satisfied: ~n × ~E and ~n · ~D will be
continuous across interfaces [2, pp. 13–16].

3. The Reflection Coefficient

To facilitate our use of PMLs in the next section, we compute the reflection coefficient at
a typical interface separating two diagonally anisotropic materials. For illustrative purposes,
we do this without loss of generality for an interface consisting of the yz-plane at x = 0.
For this we generalize the calculations in [13]. In the frequency domain, the time harmonic
Maxwell’s equations in a homogeneous region with no sources and free charge density ρ = 0
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are

(11)

∇ · ~D = 0

∇ · ~B = 0

∇× ~E = −jω ~B

∇× ~H = jω ~D + ~Jc.

The vectors in (11) are functions of position ~r = (x, y, z) and frequency ω. In the frequency
domain the constitutive relations (3) for a diagonally anisotropic material take the form

(12)

~D = εΛ ~E

~B = µ0Λ ~H

~Jc = σΛ ~E

where ε(ω) is the complex permittivity and

(13) Λ = diag(λx, λy, λz)

is a complex, frequency dependent diagonal matrix.
Let

(14) k0 = ω
√

µ0(ε(ω) + σ/(jω)).

Calculations similar to those in Section 2 give the Helmholtz equation for a homogenous,
diagonally anisotropic material

(15)
(
(λyλz)

−1∂2
x + (λxλz)

−1∂2
y + (λxλy)

−1∂2
z

)
~E + k2

0
~E = 0.

Let Λ− = diag(λx, λy, λz) be the diagonal matrix in the constitutive relations (12) for
the region x < 0, and let Λ+ = diag(γx, γy, γz) be the diagonal matrix in the constitutive
relations for the region x > 0. Take the permittivity ε and the conductivity σ to be the same
in both regions.

We look for plane wave solutions of Maxwell’s equations having the form

(16)
~E(t, ~r) = ~E0 exp (−j(~k · ~r − ωt))

~H(t, ~r) = ~H0 exp (−j(~k · ~r − ωt))

where ~E0, ~H0, and ~k are vectors with complex components, and j is the imaginary unit.
Requiring that the plane wave expression for ~E in (16) solve the Helmholtz equation (15)

gives a dispersion relation for ~k = (kx, ky, kz) in each region. For x < 0

(λyλz)
−1k2

x + (λxλz)
−1k2

y + (λxλy)
−1k2

z = k2
0.
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For x > 0 a similar relation holds with γ replacing λ. The dispersion relation is the equation
of an ellipsoid and has solutions

kx = k0

√
λyλz cos θ cos φ

ky = k0

√
λxλz cos θ sin φ

kz = k0

√
λxλy sin θ

where θ and φ are complex. In our simulations E(t, ~r) will be independent of y, so we take
φ = 0 and ky = 0. Let x̂, ŷ, and ẑ denote the standard basis vectors. Then for x < 0 the
incident and reflected wave vectors are

~ki = k0

(√
λyλz cos(θi)x̂ +

√
λxλy sin(θi)ẑ

)

~kr = k0

(
−

√
λyλz cos(θr)x̂ +

√
λxλy sin(θr)ẑ

)

and for x > 0 the transmitted wave vector is

~kt = k0

(√
γyγz cos(θt)x̂ +

√
γxγy sin(θt)ẑ

)
.(17)

Let TMy denote a plane wave where ~H has only a y-component, and let TEy denote a

plane wave where ~H has only x- and z-components. Any plane wave can be written as
a superposition of TEy and TMy waves. Let R and T be the reflection and transmission
coefficients at the interface for a TMy wave. Then using a complex parameter A we can
express the incident, reflected, and transmitted magnetic fields as

~Hi = ŷ
k0

ωµ0

A exp
(
−jk0(

√
λyλz cos(θi)x +

√
λxλy sin(θi)z)

)
exp(jωt)

~Hr = ŷ
k0

ωµ0

RA exp
(
−jk0(−

√
λyλz cos(θr)x +

√
λxλy sin(θr)z)

)
exp(jωt)

~Ht = ŷ
k0

ωµ0

T A exp
(
−jk0(

√
γyγz cos(θt)x +

√
γxγy sin(θt)z)

)
exp(jωt)
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Calculating ∇× ~H using Maxwell’s curl equations (11) and the constitutive relations (12),
we obtain the electric fields

~Ei =

(√
λy

λx

sin(θi)x̂ −
√

λy

λz

cos(θi)ẑ

)

A exp
(
−jk0(

√
λyλz cos(θi)x +

√
λxλy sin(θi)z)

)
exp(jωt)

~Er =

(√
λy

λx

sin(θr)x̂ +

√
λy

λz

cos(θr)ẑ

)

RA exp
(
−jk0(−

√
λyλz cos(θr)x +

√
λxλy sin(θr)z)

)
exp(jωt)

~Et =

(√
γy

γx

sin(θt)x̂ −
√

γy

γz

cos(θt)ẑ

)

T A exp
(
−jk0(

√
γyγz cos(θt)x +

√
γxγy sin(θt)z)

)
exp(jωt).

The tangential components of the total electric and magnetic fields are continuous at the
interface x = 0. Enforcing this continuity, for example, at the point (x, z) = (0, 0) we have

(18)

1 + R = T

−
√

λy

λz

cos θi + R
√

λy

λz

cos θr = −T
√

γy

γz

cos θt.

Solving for R gives the equation for the reflection coefficient for a TMy wave:

(19) R =

√
λy

λz
cos θi −

√
γy

γz
cos θt

√
λy

λz
cos θr +

√
γy

γz
cos θt

.

Taking the ratios of y-coordinates

ŷ · ~Hr

ŷ · ~Hi

and
ŷ · ~Ht

ŷ · ~Hi

to be constant on the interface x = 0 gives Snell’s law:

(20)
sin θi = sin θr√

λxλy sin θi =
√

γxγy sin θt.

A similar calculation shows that (19) and (20) are also the reflection coefficient and Snell’s
law for TEy waves at the x = 0 interface.

Proposition 3.1. Assume that T 6= 0 and that

(21)
λy/λz = γy/γz

λxλy = γxγy.
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Then equations (18) and (20) imply that R = 0 and there exist integers n and m such that

(22)
θr = θi + 2nπ

θt = θi + 2mπ.

Proof. By Snell’s law (20) and the Pythagorean identity we must have cos θi = ± cos θr

and cos θi = ± cos θt. Since T 6= 0 the linear equations (18) will have a finite solution if and
only if cos θi = cos θr = cos θt. Consequently R = 0 by (19) and sin(θi−θr) = sin(θi−θt) = 0
by standard trigonometric identities. The complex sine function has only real roots, so θi is
related to θr and θt by (22).

Thus, if Λ+ and Λ− satisfy (21), the planar interface normal to the x-axis will be reflec-
tionless, and the angles of incidence, reflection, and transmission will be the same for all
plane waves. Similar results can be obtained for planar interfaces normal to the y-axis or
z-axis.

4. Problem Formulation

In this section we give a problem geometry that allows for arbitrarily many PMLs, and for
each PML we define the anisotropy matrix T in the constitutive relations (3). We show that
the PML interfaces are reflectionless and that energy is attenuated in each PML. The vari-
ational equation (10) on each homogeneous region is used to formulate a global variational
equation for E with the PML and polarization terms satisfying auxiliary differential equa-
tions. Finally, an absorbing boundary condition is placed on three sides of our computation
domain to further damp the reflected energy.

Problem Geometry. We assume that E, P , and Js in (10) are independent of y so our
computational domain is contained in the xz-plane as depicted in Figure 2. Let X and Z be
closed intervals in the respective x- and z-axes, and let D = X×Z denote the computational
domain.

We partition the intervals X into disjoint closed intervals X−, X0, and X+ such that

max X− = min X0

max X0 = min X+,

and partition the interval Z into disjoint closed intervals Z−, Zv, and Zd such that

max Z− = min Zv

max Zv = min Zd.

The regions Zv and Zd are the vacuum and dielectric regions respectively. Let

Z0 = Zv ∪ Zd.

The region X0×Z0 will be our domain of interest. The buffer region D\(X0×Z0) outside our
domain of interest will contain the PMLs. This problem geometry is illustrated in Figure 2.
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Figure 2. 2-D problem geometry

Perfectly Matched Layers. Let βx(x) and βz(z) be piecewise constant, convex functions
such that βx = 0 in X0 and βz = 0 in Z0. The functions βx and βz control the damping in
the PML regions. The convexity requirement implies that βx ≥ 0, βz ≥ 0 and that damping
will be greater closer to the boundary of D. Define

(23)
ux(t, x) = δ(t) + βx(x)H(t)

uz(t, z) = δ(t) + βz(z)H(t)

where H is the Heaviside function. Let Sx and Sz be convolution operators on C[0,∞) with
kernels ux and uz respectively. Then for fixed x and z, Sx and Sz are bijections on C[0,∞)
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since for any real β

(δ(t) + βH(t)) ∗ (δ(t) − βH(t)e−βt) = δ(t).

Thus Sx, Sz ∈ B+ with B+ defined in (2).
On X × Z let the operator T in (3) be given by

(24) T =




S−1
x Sz 0 0
0 SxSz 0
0 0 SxS

−1
z


 .

Although T is defined for a two-dimensional problem there is a straightforward generalization
to three dimensions [9]. Our domain of interest is isotropic since Sx and Sz are the identity
operator in the region X0 × Z0.

The operator T̃ defined in (5) is

(25) T̃ = diag(S−2
x , I, S−2

z )

where I is the identity operator.
We will show that the PML interfaces are reflectionless and that the PMLs attenuate

energy. The operator Λ in (12) corresponding to (24) is

Λ =




s−1
x sz 0 0
0 sxsz 0
0 0 sxs

−1
z




where

(26)
sx = 1 + βx/(jω)

sz = 1 + βz/(jω).

Let x = x0 be a point of discontinuity in βx. Then the interface x = x0 will be reflectionless
by Proposition 3.1 since (21) is satisfied when

Λ− = diag(λx, λy, λz) = lim
x→x−

0

Λ(x, z)

Λ+ = diag(γx, γy, γz) = lim
x→x+

0

Λ(x, z).

Consequently the reflection coefficient at the interface will vanish and each plane wave’s
angle of incidence equals its angle of transmission. Similar arguments show the interface at a
discontinuity in βz is also reflectionless with angle of incidence equaling angle of transmission
for incident plane waves.

We can show that waves will be attenuated in each PML by introducing the transmitted

wave vector ~kt (17) into the plane wave solution (16). The plane wave’s exponential term
becomes

(27) exp
(
−jk0

(
sx(x) cos(θt)x + sz(z) sin(θt)z

))
.
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In PMLs matched to free space θt is real and the value k0 defined in (14) is k0 = ω/c where
c = 1/

√
ε0µ0 is the wave speed. Thus by the definitions of sx and sz in (26) the absolute

value of the exponential factor (27) is

exp
(
−(1/c)(βx(x) cos(θt)x + βz(z) sin(θt)z)

)
.

Thus in a PML matched to free space there is attenuation in the direction of wave propagation
cos θtx̂ + sin θtẑ, and the rate of attenuation in the x and z directions is controlled by the
magnitudes of βx and βz respectively.

In the dielectric region X × Zd, sz = 1 since βz = 0 on Z0, and the product k0 cos θt in
(27) is real-valued since planes of constant amplitude in the dielectric X0 × Zd are parallel
to the xy-plane [2, pp. 210–212]. Thus in a PML matched to a dielectric the absolute value
of the exponential factor (27) is

exp
(
−(βx(x)/ω)k0 cos(θt)x) exp((=(k0 sin θt))z).

Thus there is attenuation in the +x and −x directions in the PMLs matched to a dielectric,
the magnitude of βx controls the rate of attenuation, and the attenuation is frequency and
direction dependent.

Auxiliary Differential Equations. We will next reformulate the variational equation (10)
so that each PML term satisfies an auxiliary differential equation. Define Vx and Vz by

(28)
Vx + E = T̃xE

Vz + E = T̃zE.

From (25) we have T̃x = S−2
x . So by the definition of the kernel ux of Sx in (23) we have

Ë = ∂2
t (T̃x)

−1(Vx + E)

= ∂2
t S

2
x(Vx + E)

= ∂2
t (ux ∗ ux) ∗ (Vx + E)

= (δ̈ + 2βxδ̇(t) + β2
xδ) ∗ (Vx + E)

= V̈x + Ë + 2βx(V̇x + Ė) + β2
x(Vx + E).

Thus by (28) we may replace the T̃xE term in the variational equation (10) with Vx +E and
Vx satisfies the ordinary differential equation

V̈x + 2βx(V̇x + Ė) + β2
x(Vx + E) = 0.

Similarly, since T̃z = S−2
z we may replace T̃zE in the variational equation (10) with Vz + E

where
V̈z + 2βz(V̇z + Ė) + β2

z (Vz + E) = 0.

We model the dielectric region X × Zd as a Debye medium [3, pp. 11–12], so that the
polarization term P will satisfy the differential equation

(29) τ Ṗ + P = ε0εdIZd
E
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where IZd
is the indicator function on X × Zd, τ is the relaxation time constant, and εd is a

constant measuring the difference between the static relative permittivity (when ω = 0) and
the relative permittivity εr.

From the preceding discussion it follows that the variational equation (10) in any region
Ω where βx and βz are constant can be written as

(30) µ0ε0〈εrË, φ〉 + µ0〈P̈ , φ〉 + µ0〈σĖ, φ〉 + 〈∂x(E + Vx), ∂xφ〉 + 〈∂z(E + Vz), ∂zφ〉
− 〈∂x(E + Vx), nxφ〉∂Ω − 〈∂z(E + Vz), nzφ〉∂Ω = −µ0〈J̇s, φ〉.

where the polarization and PML terms in (30) satisfy

(31)

τ Ṗ + P = ε0εdIZd
E

V̈x + 2βxV̇x + β2
xVx = −2βxĖ − β2

xE

V̈z + 2βzV̇z + β2
zVz = −2βzĖ − β2

zE.

The zero initial conditions for our problem imply that Vz will be supported in X ×Z−, Vx

will be supported in (X− × Z) ∪ (X+ × Z), and P will be supported in X × Zd.

Global Variational Equation. Our source term ~Js in (8) will model an antenna in free
space, and we assume the signal is polarized with oscillations in the xz–plane only. Let

(32)
~Js(t, x, z) = I(0,tf )(t)I(−x̄, x̄)(x)δ(z) sin(ωt)x̂

= Js(t, x, z)x̂

where I(a,b) is the indicator function on the interval (a, b), (±x̄, 0) ∈ X0 × Zv, ωtf is an
integral multiple of 2π, and Js is defined in (9).

There are interfaces between PMLs at jumps in the PML parameters βx(x) and βz(z).
By construction these PML interfaces are reflectionless. However, when the problem is
discretized numerical reflections occur at PML interfaces. These numerical reflections can
be made arbitrarily small by making the jumps in βx and βz sufficiently small.

We note that during a finite time interval [0, tfinal], the sum of the boundary integrals
in (30), 〈∂x(E + Vx), nxφ〉∂Ω or 〈∂z(E + Vz), nzφ〉∂Ω, that arise from both sides of a PML
interface can be made arbitrarily small by taking the jumps in βx and βz to be sufficiently
small. Comparison calculations we have performed with and without the boundary integrals
from the PML interfaces (i.e., numerical computations including the integral terms properly
with quadratures vs. approximating the net integral contributions by zero) reveal that these
interface integral terms contribute very little to understanding the error control issues related
to reflections at the interfaces of the dielectric relative to those at the boundaries of the finite
computational domain. We have therefore, in this paper, chosen to approximate the interface
integrals by zero in our calculations, simplifying and concentrating on the reflections from
the computational boundary and the vacuum-dielectric interface. Other calculations (not
reported here) verify that the conclusions of our results with respect to inverse problem
methodology are not altered by inclusion of the PML interface integral terms in our system.
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After approximating the sum of the boundary integrals from both sides of a PML interface
by zero we obtain a variational equation that will hold on the entire domain D:

(33) µ0ε0〈εrË, φ〉 + µ0〈P̈ , φ〉 + µ0〈σĖ, φ〉 + 〈∂x(E + Vx), ∂xφ〉 + 〈∂z(E + Vz), ∂zφ〉
− 〈∂x(E + Vx), nxφ〉∂D − 〈∂z(E + Vz), nzφ〉∂D = −µ0〈J̇s, φ〉.

where the polarization and PML terms satisfy (31).

Absorbing Boundary Condition. We next add boundary conditions to our problem
formulation. Let C−x, C+x, C−z, and C+z denote the four boundaries of D with outward
normals in the −x, +x, −z and +z directions respectively. Assign the boundary conditions

(34)

(βx + ∂t)E = c∂xE on C−x

(βx + ∂t)E = −c∂xE on C+x

(βz + ∂t)E = c∂zE on C−z

E = 0 on C+z

where c = 1/
√

µ0ε0. The boundary condition on C+z models a dielectric with a supraconduc-
tive backing. We show below that the remaining three boundary conditions are absorbing
boundary conditions for PMLs matched to free space.

Take an incident plane wave on the C+x boundary with the form

Ei = exp(−jk0(sx(x) cos(θi)x + sz(z) sin(θi)z)) exp(jωt).

Then the reflected wave will have the form

Er = R exp(−jk0(−sx(x) cos(θi)x + sz(z) sin(θi)z)) exp(jωt).

The total wave is E = Ei + Er.
For PMLs matched to free space, θi is real-valued and

k0 cos(θi) = (ω/c) cos(θi)

by (14). For PMLs matched to the dielectric, we may assume the plane wave traveled across
the vacuum–dielectric interface. Applying Snell’s law at the vacuum-dielectric interface
shows that k0 cos(θi) is real-valued [2, pp. 210–212] and

k0 cos(θi) = (ω/c) cos(θ̃i)

where θ̃i is the real-valued angle of incidence on the vacuum-dielectric interface. Let θ = θi

for PMLs matched to free space and θ = θ̃i for PMLs matched to the dielectric. Then
applying the boundary condition (βx + ∂t)E = −c∂xE on C+x leads to the equality

(βx + jω)(1 + R) = c(jsxω/c) cos(θ)(1 −R)

= jω(1 + βx/(jω)) cos(θ)(1 −R)

= (βx + jω) cos(θ)(1 −R).
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Solving for R gives

(35) R =
cos θ − 1

cos θ + 1

where θ is a real-valued angle of incidence for either the boundary C−x or the vacuum-
dielectric interface. Similarly one can also show that (35) is the reflection coefficient for the
boundary conditions (34) on C−x and C−z.

Thus the reflection coefficient R depends on an angle of incidence and is independent
of the frequency. The reflection coefficient vanishes for θ = 0 and |R| is an increasing
function of θ on (0, π/2). In our problem we can generally expect θ ≤ π/4. Reflected waves
with sufficiently large angles of incidence will reflect off two boundaries before returning to
the domain of interest. Consequently, it is reasonable to expect this absorbing boundary
condition will reflect approximately

(
cos(π/4) − 1

cos(π/4) + 1

)2

= 0.03

of the energy. This shows that the absorbing boundary condition plays a useful role in damp-
ing outgoing energy. Indeed, unlike the situation suggested in [12], the absorbing boundary
conditions combined with the PMLs can enhance energy absorption. Our comparison calcu-
lations have verified this, at least for the problems considered in this paper.

Since differentiation commutes with convolution, it follows from the definitions of Vx and
Vz in (28) that the same boundary conditions will hold with Vx and Vz replacing E. Thus
the variational equation (33) becomes

(36) µ0ε0〈εrË, φ〉 + µ0〈P̈ , φ〉 + µ0〈σĖ, φ〉 + 〈∂x(E + Vx), ∂xφ〉 + 〈∂z(E + Vz), ∂zφ〉
+ 〈(1/c)(βx + ∂t)(E + Vx), φ〉C

−x∪C+x
+ 〈(1/c)(βz + ∂t)(E + Vz), φ〉C

−z
= −µ0〈J̇s, φ〉.

5. Discretization

To aid the numerical calculations we scale the time variable by a factor of c = 1/
√

ε0µ0

so that Ė is replaced by cĖ, Ṗ is replaced by cṖ , etc., and we scale the polarization P by a
factor of 1/ε0 so that P is replaced by ε0P . The variational equation (36) becomes

(37) 〈εrË, φ〉 + 〈P̈ , φ〉 + η0〈σĖ, φ〉 + 〈∂x(E + Vx), ∂xφ〉 + 〈∂z(E + Vz), ∂zφ〉
+ 〈(αx + ∂t)(E + Vx), φ〉C

−x∪C+x
+ 〈(αz + ∂t)(E + Vz), φ〉C

−z
= −η0〈J̇s, φ〉

where η0 =
√

µ0/ε0 is the impedance of free space, αx = βx/c, and αz = βz/c.
The differential equations (31) become

(38)

Ṗ + γP = εdγIZd
E

V̈x + 2αxV̇x + α2
xVx = −2αxĖ − α2

xE

V̈z + 2αzV̇z + α2
zVz = −2αzĖ − α2

zE
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with γ = (cτ)−1.
After scaling our source term (32) in the time variable, we obtain

(39) Js(t, x, z) = I(0,tf )(t/c)I(−x̄, x̄)(x)δ(z) sin((ω/c)t)

where (ω/c)tf is an integral multiple of 2π.
We will use a Galerkin finite element approximation to discretize the problem in the

spatial variable to obtain piecewise linear approximates for E(t, ·) and P (t, ·). Choose strictly
increasing sequences of real numbers

Πx = {xi}Nx

i=1 ⊂ X

Πz = {zj}Nz

j=1 ⊂ Z

such that Πx contains the end points of X and such that Πz contains the end points of Z
and Zd. Our grid will be the Cartesian product

(40) G = {(x, z) : x ∈ Πx, z ∈ Πz},

and the vacuum-dielectric boundary will coincide with a line of grid points. We then con-
struct a triangulation T of the computational region D such that for each triangle τ ∈ T ,
the set of vertices v(τ) satisfies

v(τ) = {(xi, zj), (xi, zj+1), (xi+1, zj+1)}

or

v(τ) = {(xi, zj), (xi+1, zj), (xi+1, zj+1)}

for some 1 ≤ i < Nx and 1 ≤ j < Nz.
Since E = 0 on C+z, let {qj}N

j=1 be an enumeration of the N = NxNz−(Nx−2) grid points

lying in D that are not in the interior C+z and let {φi(x, z)}N
i=1 be the standard piecewise

linear spline functions that are linear on each triangle τ ∈ T and satisfy

φi(qj) =

{
1 i = j
0 i 6= j.



TIME DOMAIN ELECTROMAGNETIC SCATTERING 19

Then we can approximate E, P , Vx, and Vz with

(41)

E(t, x, z) ≈
N∑

j=1

ej(t)φj(x, z)

P (t, x, z) ≈
N∑

j=1

pj(t)φj(x, z)

Vx(t, x, z) ≈
N∑

j=1

(vx)j(t)φj(x, z)

Vz(t, x, z) ≈
N∑

j=1

(vz)j(t)φj(x, z).

The basis functions φj and the coefficient functions ej, pj, (vx)j, and (vz)j depend on the
chosen grid G. Let e, p, vx, and vz be N -dimensional vectors formed from these coefficient
functions (e.g., e = (e1, e2, . . . , eN)T ).

If φ =
∑N

j=1 cjφj, then we will approximate αx(x)φ(x, z) and αz(z)φ(x, z) with

(42)

αxφ ≈
N∑

j=1

αx(x(qj))cjφj

αzφ ≈
N∑

j=1

αz(z(qj))cjφj.

where x(qj) and z(qj) denote the x and z coordinates of qj.
Making the substitution φ = φi and using the approximations (41) and (42) in the

variational equation (37) and the differential equations (38), we obtain a Galerkin finite-
dimensional system of equations

(43) (M + MZd
(ε∞ − 1))ë + MZd

p̈ + (Lx + AxBx)vx + (Lz + AzBz)vz

+ (Lx + Lz + AxBx + AzBz)e + Bxv̇x + Bzv̇z + (Bx + Bz + η0σMZd
)ė = J

with the polarization and PML terms satisfying

(44)

ṗ + γp = εdγIde

v̈x + 2Axv̇x + A2
xvx = −2Axė − A2

xe

v̈z + 2Azv̇z + A2
zvz = −2Az ė − A2

ze
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where ε∞ is the relative permittivity in the dielectric and

(45)

Mi,j = 〈φj, φi〉
(MZd

)i,j = 〈IZd
φj, φi〉

(Lx)i,j = 〈∂xφj, ∂xφi〉
(Lz)i,j = 〈∂zφj, ∂zφi〉
(Bx)i,j = 〈φj, φi〉C

−x∪C+x

(Bz)i,j = 〈φj, φi〉C
−z

(Ax)i,j =

{
αx(x(qj)) i = j
0 i 6= j

(Az)i,j =

{
αz(z(qj)) i = j
0 i 6= j

(Id)i,j =

{
1 i = j and IZd

φi 6= 0
0 otherwise

Ji = −η0〈J̇s, φi〉.

We replace the MZd
p̈ term in (43) by using the differential equation and its derivative for

P in (44) to obtain

MZd
p̈ = γ2MZd

p + εdγMZd
ė − εdγ

2MZd
e.

The final form of our variational equation is

(46) (M + MZd
(ε∞ − 1))ë + γ2MZd

p + (Lx + AxBx)vx + (Lz + AzBz)vz

+ (Lx + Lz + AxBx + AzBz − εdγ
2MZd

)e + Bxv̇x + Bzv̇z

+ (Bx + Bz + (η0σ − εdγ)MZd
)ė = J

with the polarization and PML terms satisfying (44).
The resulting system of equations can be written as a first order system in the composite

variable

ξ = (p, vx, vz, e, v̇x, v̇z, ė)
T ,

and we approximate a solution to this system using the Crank–Nicholson scheme [3, pp.
58–60].

6. Numerical Results

In this section we present numerical results which show that PMLs attenuate energy and
that numerical reflections from the PML interfaces can be controlled.

For these simulations the conductivity is σ = 1.0× 10−2, and the Debye parameters in the
differential equation (29) are τ = 1.0× 10−11 and εd = 30.0. The relative permittivity in the
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dielectric is ε∞ = 5.0. The antenna is centered at the origin, and the interrogating signal
(39) will have 3 cycles. The source term parameters in (39) are

x̄ = 0.03

ω = 2π × 1.8 × 109 rad/sec

tf = 6πc/ω (≈ 0.5 sec).

The time step for the finite differencing is 1.0 × 10−4 units in the scaled time variable.
We define the following sequence to discretize our PML regions: ξ0 = 0.05 and

ξj = ξj−1 + (0.0025) +
j − 1

59
(0.0125) j = 1, 2, . . . 60.

For the PML parameters let α0 = 0.0 and

(47) αj = αj−1 + (0.01) +
j − 1

59
(0.11) j = 1, 2, . . . 60.

Let

X− = [−ξ60,−ξ0] Z− = [−ξ60,−ξ0]

X0 = [−0.05, 0.05] Zv = [−0.05, 0.05]

X+ = [ξ0, ξ60] Zd = [0.05, 0.35].

Our grid G will be the Cartesian product

G = {(x, z) : x ∈ Π− ∪ Πv ∪ Π+, z ∈ Π− ∪ Πv ∪ Πd}
where

Πv = {(0.0025)j : −20 ≤ j ≤ 20}
Πd = {(0.0025)j : 20 ≤ j ≤ 140}
Π+ = {ξj : 0 ≤ j ≤ 60}
Π− = {−ξj : 0 ≤ j ≤ 60}.

Let αx(ξ) be any piecewise constant, convex function satisfying αx = 0 on X0 and αx(ξj) =
αx(−ξj) = αj. Let αz be any piecewise constant, convex function satisfying αz = 0 on
Z0 = Zv ∪ Zd and αz(−ξj) = αj.

There will be a loss in accuracy due to the coarser grid as we approach the boundary of
D = X × Z, but the coarser grid occurs outside of our domain of interest and substantially
reduces the number of grid nodes needed for our simulation.

The interfaces between PMLs are reflectionless; however, when the problem is discretized
numerical reflections occur when there are jumps in the PML parameter. These numerical
reflections at a PML interface may be made arbitrarily small by making the jump in the
PML parameters αj sufficiently small.

We have also computed the solution when the grid G is preserved and the PMLs are
replaced with free space. The absolute difference between the free space solution and the
PML solution in the domain of interest X0×Z0 is less than 0.6. By contrast, the amplitude of
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the signal after reflecting off the vacuum-dielectric interface is approximately 15 as we will see
in Figure 3. This implies that the error in the domain of interest due to numerical reflections
from the PMLs is less than 0.6/15 = 4% of the amplitude of the reflected interrogating
signal.

In Figures 3, 4, and 5 we give snapshots E(t̃, 0, z) of the electric field along the z-axis at
times t̃ = 0.6001, 1.6001, and 3.6000, respectively.

The source current Js propagates three cycles during the time interval 0 < t < tf ≈ 0.5,
and energy travels at unit speed in the vacuum region −0.05 < z < 0.05 and the PML region
z < −0.5. Consequently at time t = 0.6001 (Figure 3) part of the original signal (the left
moving part: the antenna emits both left and right moving interrogating signals into the
vacuum) will be in the z-interval (−0.6,−0.1), the signal reflected from the vacuum-dielectric
interface at z = 0.05 will be in the z-interval (−0.5, 0), and the transmitted signal will be in
the dielectric region 0.05 < z < .35. The trailing wave crest of the reflected signal is visible
at z = 0 and has an amplitude of approximately 15. The PML induced damping of the
signal is evident in the PML region z < −0.05.

At time t = 1.6001 (Figure 4) the Brillouin precursors [1, 3, 8] can be seen in the Debye
medium 0.05 < z < 0.35. The signal in the Debye medium is still moving in the positive z
direction. The original left-moving signal and the signal reflected from the vacuum-dielectric
interface have had sufficient time to hit the computational boundary and return to the
domain of interest X0 × Z0. All the energy evident in the vacuum interval −0.05 < z <
0.05 has returned after reflecting off a PML interface or the computational boundary. The
amplitude of this reflected energy is less than 0.4 while the amplitude of the leading wave
crest in the dielectric is approximately 1.6.

At time t = 3.6 (Figure 5) the transmitted signal has reflected off the dielectric’s supra-
conductive backing and has emerged from the dielectric. The leading wave crest of this
secondary reflection is visible at z = 0. The energy that has returned to the domain of
interest X0 × Z0 after reflecting off a PML interface or the computational boundary is seen
as “saw teeth” superposed on the leading wave crest of the secondary reflection off the dielec-
tric’s supraconductive backing. This figure shows that the depth of the dielectric material is
recoverable in the inverse problem (see [3] for details on how this is done).

The amount of numerical reflection from the PML interfaces can be controlled by making
the jumps in the PML parameters sufficiently small. For instance, if the PML parameters
αj in (47) are redefined to be

αj = αj−1 + (0.001) +
j − 1

59
(0.011) j = 1, 2, . . . 60.

then a simulation shows that the error in the domain of interest due to numerical reflections
from the PMLs is less than 0.08. (As mentioned above, the PML parameters in (47) give a
maximum error of 0.6.) However, the damping in the PML region is much less with these
smaller parameters. If smaller jumps in the PML parameter are used then more grid points
are needed in the regions X−, X+, and Z− to obtain the damping achieved using larger
jumps.
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Figure 3. Graph of E(0.6001, 0, z) for z ∈ Z
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Figure 4. Graph of E(1.6001, 0, z) for z ∈ Z
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Figure 5. Graph of E(3.6, 0, z) for z ∈ Z

7. Concluding Remarks

Numerical simulations demonstrate that reflections from interfaces at PML boundaries
can be controlled by reducing the number or magnitude of the jumps in the PML parameter.
Furthermore, our simulations have demonstrated that attenuation occurs in the PML regions,
so expanding the size of PML regions results in greater energy attenuation. Thus a strategy
of reducing the size and number of jumps in the PML parameter while expanding the size
of the PML regions will allow one to simultaneously control both the reflection from PML
interfaces and the return of energy from the computational boundary.

The successful use of PMLs in these simulations enables us to compute the electromagnetic
field and solve a 2-D forward problem while controlling reflections from finite computational
domains. We fully anticipate that our solution methodology for the forward problem will
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permit us to determine dielectric depth and parameters in an inverse problem thereby ex-
tending the inverse problem methodology for the one-dimensional case given in [3]. We are
currently combining the ideas presented here with a reduced order computational method-
ology (Proper Orthogonal Decomposition based techniques, see [4] for details) in pursuing
multidimensional domain inverse problems that generalize to higher dimensions the ideas of
[3].
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